# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a203983 Showing 1-1 of 1 %I A203983 #5 Mar 31 2012 12:37:00 %S A203983 24576,1119744,51018336,2447270496,118333620576,5764846339584, %T A203983 281455764775776,13760034485954400,673045752535673184, %U A203983 32929530583286102400,1611290252343314405376,78847099619621520230496 %N A203983 Number of (n+1)X8 0..2 arrays with no 2X2 subblock having equal diagonal elements or equal antidiagonal elements, and new values 0..2 introduced in row major order %C A203983 Column 7 of A203984 %H A203983 R. H. Hardin, Table of n, a(n) for n = 1..194 %F A203983 Empirical: a(n) = 81*a(n-1) -990*a(n-2) -55557*a(n-3) +1308051*a(n-4) +9877815*a(n-5) -472364460*a(n-6) +943100415*a(n-7) +77404069476*a(n-8) -518255160660*a(n-9) -6362605755783*a(n-10) +72333960423075*a(n-11) +223601505317082*a(n-12) -5264665776830025*a(n-13) +3575284914586527*a(n-14) +225704467607414148*a(n-15) -691301950951353183*a(n-16) -5753524457427090471*a(n-17) +31302036027799741413*a(n-18) +76304508958149193188*a(n-19) -780598320639827527251*a(n-20) -32107509630606372660*a(n-21) +11916298097181567343665*a(n-22) -16999232257151001851004*a(n-23) -110708791324500349192293*a(n-24) +303730479433392729885693*a(n-25) +555754575465898156952694*a(n-26) -2737618881639491778320259*a(n-27) -584755510344811831795446*a(n-28) +14407869192888759424255026*a(n-29) -9579065689150601713125282*a(n-30) -44620541811711898638722874*a(n-31) +59888834204786049381681870*a(n-32) +75210686676036004338582552*a(n-33) -168955611080998044775817142*a(n-34) -43167918621829199898820959*a(n-35) +262083277346193044061068880*a(n-36) -64367087618676610768687146*a(n-37) -218976915013228373921343981*a(n-38) +130739067080067867741115677*a(n-39) +78915491598396738245792607*a(n-40) -84109173336513103888007001*a(n-41) +3118769447215496774534127*a(n-42) +17814505620501527202817290*a(n-43) -6540848332303545808795602*a(n-44) +717897987691852588770249*a(n-45) %e A203983 Some solutions for n=4 %e A203983 ..0..1..2..2..2..0..2..1....0..0..0..0..0..1..0..2....0..0..1..2..1..2..1..1 %e A203983 ..2..1..0..0..1..0..2..0....1..1..1..2..2..2..0..1....1..2..1..2..0..2..0..2 %e A203983 ..0..1..2..2..1..0..1..0....2..2..0..0..0..1..0..1....1..2..1..2..0..2..1..2 %e A203983 ..2..1..0..0..1..0..2..2....0..1..1..2..2..2..2..2....0..2..1..2..1..2..0..0 %e A203983 ..2..1..2..2..2..0..1..0....2..2..0..0..1..0..1..0....0..2..1..0..0..2..1..1 %K A203983 nonn %O A203983 1,1 %A A203983 _R. H. Hardin_ Jan 09 2012 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE