# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a195074 Showing 1-1 of 1 %I A195074 #6 Mar 30 2012 18:57:44 %S A195074 1,3,2,6,4,5,10,7,9,8,15,11,14,12,13,21,16,20,17,19,18,28,22,27,23,26, %T A195074 25,24,36,29,35,30,34,33,31,32,45,37,44,38,43,42,39,41,40,55,46,54,47, %U A195074 53,52,48,51,49,50,66,56,65,57,64,63,58,62,59,61,60,78,67,77 %N A195074 Interspersion fractally induced by A194920, a rectangular array, by antidiagonals. %C A195074 See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence. Every pair of rows eventually intersperse. As a sequence, A194974 is a permutation of the positive integers, with inverse A195075. %C A195074 To see that A195074 differs from A194988, note that the generating sequences A195072 and A194986 differ. %e A195074 Northwest corner: %e A195074 1...3...6...10..15..21 %e A195074 2...4...7...11..16..22 %e A195074 5...9...14..20..27..35 %e A195074 8...12..17..23..30..38 %e A195074 13..19..26..34..43..53 %t A195074 r = Sqrt[3]; p[n_] := n - Floor[n/r] %t A195074 Table[p[n], {n, 1, 90}] (* A195072 *) %t A195074 g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]] %t A195074 f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]] %t A195074 f[20] (* A195073 *) %t A195074 row[n_] := Position[f[30], n]; %t A195074 u = TableForm[Table[row[n], {n, 1, 5}]] %t A195074 v[n_, k_] := Part[row[n], k]; %t A195074 w = Flatten[Table[v[k, n - k + 1], {n, 1, 13}, %t A195074 {k, 1, n}]] (* A195074 *) %t A195074 q[n_] := Position[w, n]; Flatten[ %t A195074 Table[q[n], {n, 1, 80}]] (* A195075 *) %Y A195074 Cf. A195072, A195074, A195075. %K A195074 nonn,tabl %O A195074 1,2 %A A195074 _Clark Kimberling_, Sep 08 2011 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE