# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a187372 Showing 1-1 of 1 %I A187372 #7 Mar 30 2012 18:35:54 %S A187372 17,19,23,29,34,38,46,47,49,51,53,57,58,59,61,68,69,71,76,83,85,87,89, %T A187372 92,94,95,97,98,102,103,107,109,113,114,115,116,118,119,121,122,127, %U A187372 129,131,133,136,138,139,141,142,145,147,149,151,152,153,157,161,163,166,167,169,170,171,173,174,177,178,179,181,183,184,188 %N A187372 Numbers k such that the decimal digits of 1/k contain every digit at least once. %e A187372 17 is in the sequence because 1/17 = .0588235294117647 0588235294117647 ... %e A187372 contains every digit at least once ; %e A187372 31 is not in the sequence because 1/31 = .032258064516129 032258064516129... %e A187372 without the digit 7. %p A187372 with(numtheory):Digits:=200:B:={0, 1, 2, 3, 4, 5, 6, 7, 8, 9}: T:=array(1..250) %p A187372 : for p from 1 to 200 do:ind:=0:n:=floor(evalf(10^200/p)):l:=length(n):n0:=n:s:=0:for %p A187372 m from 1 to l do:q:=n0:u:=irem(q, 10):v:=iquo(q, 10):n0:=v : T[m]:=u:od: A:=convert(T, %p A187372 set):z:=nops(A):if A intersect B = B and ind=0 then ind:=1: printf(`%d, `, p):else %p A187372 fi:od: %t A187372 A2 := {}; Do[ If[Length[Union[IntegerDigits[Floor[10^200/n]]]] == 10, A2 = %t A187372 Join[A2, {n}]], {n, 1, 200}]; Print[A2] %Y A187372 Cf. A187614. %K A187372 nonn,base %O A187372 1,1 %A A187372 _Michel Lagneau_, Mar 09 2011 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE