# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a177788 Showing 1-1 of 1 %I A177788 #11 May 01 2024 06:39:17 %S A177788 4,63,1456,44275,1669536,75163011,3934369216,234799050915, %T A177788 15736644960400,1170354134607658,95648578915114512, %U A177788 8520904136405458044,821828481957792579648,85317719822978885714475,9485883860726883646713600,1124586875214241546178986915 %N A177788 a(n) = binomial(n^2, n+1)/(n-1). %C A177788 The entries are integer for n >= 2 because binomial(n^2,n+1)/(n-1) = n*binomial(n^2-2,n-1), which is a product of two integers. %H A177788 G. C. Greubel, Table of n, a(n) for n = 2..335 %F A177788 a(n) = binomial(n^2,n+1)/(n-1). %F A177788 a(n) = n * A177234(n). %F A177788 a(n) = n^2 * A177784(n). %p A177788 n0:=30: T:=array(1..n0): T:=array(1..n0-1): for n from 2 to n0 do: T[n-1]:= (binomial(n^2,n+1))/(n-1): od: print(T): %t A177788 Table[Binomial[n^2,n+1]/(n-1), {n,2,40}] (* _G. C. Greubel_, Apr 28 2024 *) %o A177788 (Magma) [Binomial(n^2,n+1)/(n-1): n in [2..30]]; // _G. C. Greubel_, Apr 28 2024 %o A177788 (SageMath) [binomial(n^2,n+1)/(n-1) for n in range(2,31)] # _G. C. Greubel_, Apr 28 2024 %o A177788 (PARI) a(n) = binomial(n^2, n+1)/(n-1) \\ _Charles R Greathouse IV_, May 01 2024 %Y A177788 Cf. A000108, A014062, A060545, A177234, A177456, A177784. %K A177788 nonn %O A177788 2,1 %A A177788 _Michel Lagneau_, May 13 2010 %E A177788 Removed redundant second Maple version - _R. J. Mathar_, May 14 2010 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE