# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a155069 Showing 1-1 of 1 %I A155069 #91 Oct 29 2024 12:22:35 %S A155069 1,1,2,6,22,90,394,1806,8558,41586,206098,1037718,5293446,27297738, %T A155069 142078746,745387038,3937603038,20927156706,111818026018,600318853926, %U A155069 3236724317174,17518619320890,95149655201962,518431875418926,2832923350929742,15521467648875090 %N A155069 Expansion of (3 - x - sqrt(1 - 6*x + x^2))/2. %C A155069 A minor variation of A006318. Unsigned version of A086456 and A103137. The Hankel transform of this sequence is A006125. %C A155069 a(n) is also the number of "branching configurations" for RNA (see Sankoff, 1985) that have exactly n hairpins. - _Lee A. Newberg_, Mar 30 2010 %C A155069 a(n) is also the number of ways to insert balanced parentheses into a product of n variables such that each parenthesis pair has 2 or more top-level factors. - _Lee A. Newberg_, Apr 06 2010 %C A155069 a(n) is also the number of infix expressions with n variables and operators + and - such that there are no redundant parentheses. - _Vjeran Crnjak_, Apr 25 2020 %C A155069 a(n) is also the number of permutations on n elements that can be obtained with an output-restricted (or input-restricted) deque. (see D. E. Knuth: The Art of Computer Programming, Volume 1, page 539). - _Zhujun Zhang_, Oct 15 2023 %D A155069 S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. see p. 399 Table A.7 %D A155069 D. E. Knuth, The Art of Computer Programming, Volume 1, Fundamental Algorithms, section 2.2.1: Stacks, Queues, and Deques. %H A155069 Michael De Vlieger, Table of n, a(n) for n = 0..1313 %H A155069 J. Abate and W. Whitt, Integer Sequences from Queueing Theory , J. Int. Seq. 13 (2010), 10.5.5, Theorem 5. %H A155069 Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385. %H A155069 Christian Bean, Finding structure in permutation sets, Ph.D. Dissertation, Reykjavík University, School of Computer Science, 2018. %H A155069 Arnauld Mesinga Mwafise, Computational and Combinatorial Enumeration of Poset Matrices, 2024. See p. 8. %H A155069 D. Sankoff, Simultaneous solution of the RNA folding, alignment and protosequence problems, Siam J. Appl. Math 45(5):810-825 (1985). [From _Lee A. Newberg_, Mar 30 2010] %F A155069 G.f.: (3 - x - sqrt(1 -6*x +x^2))/2. %F A155069 G.f.: 4 / (3 - x + sqrt(1 - 6*x + x^2)). - _Michael Somos_, Apr 18 2012 %F A155069 a(n) ~ sqrt((sqrt(18)-4)/(4*Pi)) * n^(-3/2) * (3 + sqrt(8))^n, which is, approximately, a(n) ~ 0.1389558648 * n^(-1.5) * 5.828427125^n. - _Lee A. Newberg_, Apr 06 2010 %F A155069 a(n) ~ (1 + sqrt(2))^(2*n-1) / (2^(3/4)*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 23 2023 %F A155069 a(n) = top left term of M^n, where M = the production matrix: %F A155069 1, 1, 0, 0, 0, ... %F A155069 1, 2, 1, 0, 0, ... %F A155069 1, 2, 2, 1, 0, ... %F A155069 1, 2, 2, 2, 1, ... %F A155069 1, 2, 2, 2, 2, 1, ... %F A155069 ... %F A155069 Top row terms of M^n generates rows of triangle A132372. - _Gary W. Adamson_, Jul 07 2011 %F A155069 G.f.: A(x)=(3 -x- sqrt(1-6*x+x^2))/2= 2 - G(0); G(k)= 1 + x - 2*x/G(k+1); (continued fraction, 1-step, 1 var.). - _Sergei N. Gladkovskii_, Jan 04 2012 %F A155069 G.f.: A(x)=(3 -x -sqrt(1-6*x+x^2))/2= G(0); G(k)= := 1 - x/(1 - 2/G(k+1)); (continued fraction, 2-step, 2 var.). - _Sergei N. Gladkovskii_, Jan 04 2012 %F A155069 D-finite with recurrence: n*a(n) +3*(3-2*n)*a(n-1) +(n-3)*a(n-2)=0. - _R. J. Mathar_, Jul 24 2012 %F A155069 G.f.: 1 / (1 - x / (1 - x / (1 - 2*x / (1 - x / (1 - 2*x / (1 - x / ... )))))) = 1 + x / (1 - 2*x / (1 - x / (1 - 2*x / (1 - x / (1 - 2*x / (1 - x / ... )))))). - _Michael Somos_, Jan 03 2013 %F A155069 G.f.: 2 - x - G(0), where G(k)= k+1 - 2*x*(k+1) - 2*x*(k+1)*(k+2)/G(k+1) ; (continued fraction). - _Sergei N. Gladkovskii_, Jul 14 2013 %F A155069 a(n) = (1/n)*Sum_{i = 0..floor(n/2)} binomial(n+i-1, i)*binomial(2*n, n-2*i-1), n>0, a(0)=1. - _Vladimir Kruchinin_, Nov 13 2014 %F A155069 a(n) = Catalan(n)*hypergeometric([1/2-n/2, 1-n/2, n], [n/2+1, n/2+3/2], 1). - _Peter Luschny_, Nov 14 2014 %F A155069 a(0) = 1; a(n) = a(n-1) + Sum_{k=1..n-1} a(k) * a(n-k). - _Ilya Gutkovskiy_, Apr 11 2021 %e A155069 From _Lee A. Newberg_, Mar 30 2010: (Start) %e A155069 For n = 2, the a(2) = 2 branching configurations are ()() and (()()), where each () indicates a hairpin (also termed 1-loop) and each other pair of parentheses indicates a k-loop for k >= 3. %e A155069 For n = 3, the a(3) = 6 branching configurations are ()()(), (()())(), ()(()()), (()()()), ((()())()), and (()(()())). (End) %e A155069 When inserting balanced parentheses into the product x^n: For n = 0, the a(0) = 1 possible term is the empty term. For n = 1, the a(1) = 1 possible term is x. For n = 2, the a(2) = 2 possible terms are xx and (xx). For n = 3, the a(3) = 6 possible terms are xxx, (xx)x, x(xx), (xxx), ((xx)x), and (x(xx)). - _Lee A. Newberg_, Apr 06 2010 %e A155069 G.f. = 1 + x + 2*x^2 + 6*x^3 + 22*x^4 + 90*x^5 + 394*x^6 + 1806*x^7 + ... %p A155069 seq(coeff(series((3-x -sqrt(1-6*x+x^2))/2, x, n+1), x, n), n = 0..25); # _G. C. Greubel_, Jun 08 2020 %t A155069 CoefficientList[Series[(3 -x -Sqrt[1-6x+x^2])/2, {x, 0, 25}], x] (* _Vincenzo Librandi_, Nov 13 2014 *) %o A155069 (Maxima) %o A155069 a(n):=if n<1 then 1 else sum(binomial(n+i-1,i)* binomial(2*n, n-2*i-1),i,0,(n)/2)/(n); /* _Vladimir Kruchinin_, Nov 13 2014 */ %o A155069 (Sage) %o A155069 a = lambda n: catalan_number(n)*hypergeometric([1/2-n/2,1-n/2,n],[n/2+1,n/2+3/2],1) %o A155069 print([simplify(a(n)) for n in (0..25)]) # _Peter Luschny_, Nov 14 2014 %o A155069 (Magma) R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( (3-x-Sqrt(1-6*x+x^2))/2 )); // _G. C. Greubel_, Jun 08 2020 %Y A155069 Cf. A006318, A085403, A086456, A103137, A132372. %K A155069 nonn %O A155069 0,3 %A A155069 _Philippe Deléham_, Nov 02 2009 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE