# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a150452 Showing 1-1 of 1 %I A150452 #4 Dec 29 2023 00:14:40 %S A150452 1,2,7,24,105,425,1977,8631,41261,187676,910559,4246915,20787681, %T A150452 98571981,485219638,2327411883,11500348994,55622208284,275578607198, %U A150452 1341114592732,6657370299054,32551554792627,161820037945969,794141060496540,3952133603604302,19451910424970058,96886232243443329 %N A150452 Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (-1, 1, 1), (1, 0, 0), (1, 1, -1), (1, 1, 0)}. %H A150452 A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899. %t A150452 aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, k, -1 + n] + aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, j, k, -1 + n] + aux[1 + i, -1 + j, -1 + k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}] %K A150452 nonn,walk %O A150452 0,2 %A A150452 _Manuel Kauers_, Nov 18 2008 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE