# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a140019 Showing 1-1 of 1 %I A140019 #17 Sep 08 2022 08:45:34 %S A140019 139,199,439,859,1039,1231,1291,1459,1531,1699,1951,2131,2239,2539, %T A140019 2551,2791,3331,3559,3631,4339,4651,4759,5431,5659,5851,6691,6991, %U A140019 7159,7411,7591,7699,8011,8839,9091,9439,9931,10111,10531,10891,11059 %N A140019 Primes of the form 10x^2+10xy+139y^2. %C A140019 Discriminant=-5460. See A139827 for more information. %H A140019 Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi] %H A140019 N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references) %F A140019 The primes are congruent to {139, 199, 391, 439, 451, 859, 979, 1039, 1231, 1291, 1459, 1531, 1699, 1819, 1951, 2071, 2131, 2239, 2539, 2551, 2791, 2911, 3331, 3379, 3559, 3631, 3799, 3979, 4339, 4471, 4651, 4759, 4819, 4891, 5071, 5431} (mod 5460). %t A140019 QuadPrimes2[10, -10, 139, 10000] (* see A106856 *) %o A140019 (Magma) [ p: p in PrimesUpTo(13000) | p mod 5460 in {139, 199, 391, 439, 451, 859, 979, 1039, 1231, 1291, 1459, 1531, 1699, 1819, 1951, 2071, 2131, 2239, 2539, 2551, 2791, 2911, 3331, 3379, 3559, 3631, 3799, 3979, 4339, 4471, 4651, 4759, 4819, 4891, 5071, 5431} ]; // _Vincenzo Librandi_, Aug 05 2012 %K A140019 nonn,easy %O A140019 1,1 %A A140019 _T. D. Noe_, May 02 2008 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE