# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a128387 Showing 1-1 of 1 %I A128387 #16 Nov 08 2022 01:47:08 %S A128387 1,1,6,11,66,146,876,2131,12786,32966,197796,530526,3183156,8786436, %T A128387 52718616,148733571,892401426,2561439806,15368638836,44731364266, %U A128387 268388185596,790211926076,4741271556456,14095578557486 %N A128387 Expansion of c(5x^2)/(1-x*c(5x^2)), where c(x) is the g.f. of A000108. %C A128387 Hankel transform is 5^C(n+1,2). %C A128387 Reversion of x*(1+x)/(1+2*x+6*x^2). %H A128387 G. C. Greubel, Table of n, a(n) for n = 0..1000 %F A128387 G.f.: (sqrt(1-20*x^2) + 2*x - 1)/(2*x*(1-6*x)). %F A128387 a(n) = (1/(n+1))*Sum_{k=0..n+1} Sum_{j=0..k} C(n,k)*C(k,j)*C(2*n-2*k+j, n-2*k+j)*(-1)^(n+j)*2^j*6^(k-j). %F A128387 a(n) = Sum_{k=0..floor(n/2)} C(n,n-k)*(n-2*k+1)*5^k/(n-k+1). %F A128387 a(n) = Sum_{k=0..floor(n/2)} A009766(n-k,k)*5^k. %F A128387 a(n) = Sum_{k=0..n} 5^k*A120730(n,n-k). - _Philippe Deléham_, Mar 03 2007 %F A128387 (n+1)*a(n) = 6*(n+1)*a(n-1) + 20*(n-2)*a(n-2) - 120*(n-2)*a(n-3). - _R. J. Mathar_, Nov 14 2011 %t A128387 A120730[n_, k_]:= If[n>2*k, 0, Binomial[n, k]*(2*k-n+1)/(k+1)]; %t A128387 A126387[n_]:= Sum[5^k*A120730[n, n-k], {k,0,n}]; %t A128387 Table[A126387[n], {n, 0, 50}] (* _G. C. Greubel_, Nov 07 2022 *) %o A128387 (Magma) R:=PowerSeriesRing(Rationals(), 50); Coefficients(R!( (Sqrt(1-20*x^2)+2*x-1)/(2*x*(1-6*x)) )); // _G. C. Greubel_, Nov 07 2022 %o A128387 (SageMath) %o A128387 def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1) %o A128387 def A126387(n): return sum(5^k*A120730(n,n-k) for k in range(n+1)) %o A128387 [A126387(n) for n in range(51)] # _G. C. Greubel_, Nov 07 2022 %Y A128387 Cf. A000108, A009766, A120730, A126386. %K A128387 easy,nonn %O A128387 0,3 %A A128387 _Paul Barry_, Feb 28 2007 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE