# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a124910 Showing 1-1 of 1 %I A124910 #12 Mar 15 2024 07:26:30 %S A124910 0,2,7,3,1,8,4,2,13,11,7,5,3,16,14,27,12,10,8,21,6,19,4,17,2,15,28,13, %T A124910 26,11,39,24,9,22,7,35,20,5,33,18,3,31,16,44,29,57,14,42,27,55,12,40, %U A124910 25,53,10,38,23,94,8,36,107,21,49,6,34,105,19,47,4,32,103,17,88,45,116,30 %N A124910 a(n) = least integer j >= 0 such that n = floor((5^j)/(3^k)) for some integer k >= 0. %C A124910 The k-sequence is A124918. %H A124910 Robert Israel, Table of n, a(n) for n = 1..10000 %e A124910 1 = floor(5^0 / 3^0), %e A124910 2 = floor(5^2 / 3^2), %e A124910 3 = floor(5^7 / 3^9), %e A124910 4 = floor(5^3 / 3^3), ..., %e A124910 so j-sequence = (0,2,7,3,...); k-sequence = (0,2,9,3,...). %p A124910 N:= 100: # for a(1) .. a(N) %p A124910 V:=Vector(N,-1): count:= 0: %p A124910 for j from 0 while count < N do %p A124910 x:= 5^j; %p A124910 k0:= max(0,floor(log[3](x/N))); %p A124910 x:= x/3^(k0-1); %p A124910 for k from k0 do %p A124910 x:= x/3; %p A124910 if x < 1 then break fi; %p A124910 m:= floor(x); %p A124910 if m <= N and V[m] = -1 then V[m]:= j; count:= count+1 fi %p A124910 od od: %p A124910 convert(V,list); # _Robert Israel_, Mar 08 2024 %Y A124910 Cf. A124918. %K A124910 nonn %O A124910 1,2 %A A124910 _Clark Kimberling_, Nov 13 2006, corrected Nov 13 2006 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE