# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a120025 Showing 1-1 of 1 %I A120025 #5 Jul 10 2011 18:41:28 %S A120025 2,1,4,2,2,1,1,6,2,4,1,1,1,4,1,1,2,14,2,3,2,1,1,2,2,2,1,1,8,1,2,1,1,2, %T A120025 2,1,3,2,11,979,3,19,1,1,39,2,1,4,4,4,1,27,1,1,22,6,1,8,13,1,1,1,24,5, %U A120025 3,21,8,3,1,2,1,2,2,1,2,1,1,2,4,1,6,1,2,1,1,12,77,2,1,4,2,4,2,1,2,1,35,2 %N A120025 Continued fraction expansion of the value of Minkowski's question mark function at the base of the natural logarithm. %H A120025 Index entries for Minkowski's question mark function %H A120025 Index entries for sequences related to Minkowski's question mark function %F A120025 2 + 2(Sum[(-1)^(k)/2^(1/9*k^2 + k - 1), {k, 3, n, 3}] + Sum[(-1)^(k)/2^((1/9)(k + 8)(k - 1)), {k, 4, n, 3}] + Sum[(-1)^(k)/2^((1/9)(k^2 + 5*k - 5)), {k, 2, n, 3}]) %t A120025 ContinuedFraction[(cf = ContinuedFraction[E, 150(*arbitrary precision*)]; IntegerPart[E] + Sum[(-1)^(k)/2^(Sum[cf[[i]], {i, 2, k}] - 1), {k, 2, Length[cf]}]), 100] %Y A120025 Cf. A120026. %K A120025 cofr,nonn %O A120025 0,1 %A A120025 Joseph Biberstine (jrbibers(AT)indiana.edu), Jun 04 2006 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE