# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a110528 Showing 1-1 of 1 %I A110528 #25 Jan 01 2024 11:37:36 %S A110528 1,10,37,162,681,2890,12237,51842,219601,930250,3940597,16692642, %T A110528 70711161,299537290,1268860317,5374978562,22768774561,96450076810, %U A110528 408569081797,1730726404002,7331474697801,31056625195210 %N A110528 a(n+3) = 3*a(n+2) + 5*a(n+1) + a(n), a(0) = 1, a(1) = 10, a(2) = 37. %C A110528 Compare with A110526, A110527. %H A110528 G. C. Greubel, Table of n, a(n) for n = 0..1000 %H A110528 Robert Munafo, Sequences Related to Floretions %H A110528 Index entries for linear recurrences with constant coefficients, signature (3,5,1). %F A110528 G.f.: -(1 + 7*x + 2*x^2)/((1 + x)*(x^2 + 4*x - 1)). %F A110528 a(n) = A001077(n+1) - (-1)^n. - _Ehren Metcalfe_, Nov 18 2017 %p A110528 seriestolist(series(-(1+7*x+2*x^2)/((1+x)*(x^2+4*x-1)), x=0,25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 2tesseq[(- 'i + 'j - i' + j' - 'kk' - 'ik' - 'jk' - 'ki' - 'kj')(+ .5'i + .5i' + .5'jj' + .5'kk')] %t A110528 LinearRecurrence[{3,5,1},{1,10,37},30] (* _Harvey P. Dale_, Apr 21 2016 *) %o A110528 (PARI) x='x+O('x^50); Vec(-(1+7*x+2*x^2)/((1+x)*(x^2+4*x-1))) \\ _G. C. Greubel_, Aug 30 2017 %Y A110528 Cf. A110526, A110527. %K A110528 easy,nonn %O A110528 0,2 %A A110528 _Creighton Dement_, Jul 24 2005 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE