# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a106353 Showing 1-1 of 1 %I A106353 #15 Apr 02 2023 15:16:28 %S A106353 2,6,14,24,46,66,100,138,192,246,324,402,506,612,746,882,1054,1224, %T A106353 1432,1644,1896,2148,2448,2748,3098,3450,3854,4260,4726,5190,5716, %U A106353 6246,6840,7434,8100,8766,9506,10248,11066,11886,12790,13692,14680,15672 %N A106353 Number of compositions of n into 4 parts such that no two adjacent parts are equal. %H A106353 A. Knopfmacher and H. Prodinger, On Carlitz compositions, European Journal of Combinatorics, Vol. 19, 1998, pp. 579-589. %H A106353 Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, -2, 0, 0, 1, 1, -1). %F A106353 G.f.: (8*x^10+4*x^9+6*x^8+4*x^7+2*x^6) / ((1-x)*(1-x^2)*(1-x^3)*(1-x^4)). %t A106353 Drop[CoefficientList[Series[(8x^10+4x^9+6x^8+4x^7+2x^6)/((1-x)(1-x^2)(1-x^3)(1-x^4)),{x,0,60}],x],6] (* or *) LinearRecurrence[{1,1,0,0,-2,0,0,1,1,-1},{2,6,14,24,46,66,100,138,192,246},60] (* _Harvey P. Dale_, Apr 02 2023 *) %Y A106353 Column 4 of A106351. Cf. A003242. %K A106353 nonn %O A106353 6,1 %A A106353 _Christian G. Bower_, Apr 29 2005 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE