# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a073345 Showing 1-1 of 1 %I A073345 #20 Mar 02 2024 10:37:21 %S A073345 1,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,6,0,0, %T A073345 0,0,0,0,0,6,8,0,0,0,0,0,0,0,4,20,0,0,0,0,0,0,0,0,1,40,16,0,0,0,0,0,0, %U A073345 0,0,0,68,56,0,0,0,0,0,0,0,0,0,0,94,152,32,0,0,0,0,0,0,0,0,0,0,114,376,144,0,0,0,0,0,0,0 %N A073345 Table T(n,k), read by ascending antidiagonals, giving the number of rooted plane binary trees of size n and height k. %D A073345 Luo Jian-Jin, Catalan numbers in the history of mathematics in China, in Combinatorics and Graph Theory, (Yap, Ku, Lloyd, Wang, Editors), World Scientific, River Edge, NJ, 1995. %H A073345 Alois P. Heinz, Antidiagonals n = 0..200, flattened %H A073345 Henry Bottomley and Antti Karttunen, Notes concerning diagonals of the square arrays A073345 and A073346. %H A073345 Andrew Odlyzko, Analytic methods in asymptotic enumeration. %F A073345 (See the Maple code below. Is there a nicer formula?) %F A073345 This table was known to the Chinese mathematician Ming An-Tu, who gave the following recurrence in the 1730s. a(0, 0) = 1, a(n, k) = Sum[a(n-1, k-1-i)( 2*Sum[ a(j, i), {j, 0, n-2}]+a(n-1, i) ), {i, 0, k-1}]. - _David Callan_, Aug 17 2004 %F A073345 The generating function for row n, T_n(x):=Sum[T(n, k)x^k, k>=0], is given by T_n = a(n)-a(n-1) where a(n) is defined by the recurrence a(0)=0, a(1)=1, a(n) = 1 + x a(n-1)^2 for n>=2. - _David Callan_, Oct 08 2005 %e A073345 The top-left corner of this square array is %e A073345 1 0 0 0 0 0 0 0 0 ... %e A073345 0 1 0 0 0 0 0 0 0 ... %e A073345 0 0 2 1 0 0 0 0 0 ... %e A073345 0 0 0 4 6 6 4 1 0 ... %e A073345 0 0 0 0 8 20 40 68 94 ... %e A073345 E.g. we have A000108(3) = 5 binary trees built from 3 non-leaf (i.e. branching) nodes: %e A073345 _______________________________3 %e A073345 ___\/__\/____\/__\/____________2 %e A073345 __\/____\/__\/____\/____\/_\/__1 %e A073345 _\/____\/____\/____\/____\./___0 %e A073345 The first four have height 3 and the last one has height 2, thus T(3,3) = 4, T(3,2) = 1 and T(3,any other value of k) = 0. %p A073345 A073345 := n -> A073345bi(A025581(n), A002262(n)); %p A073345 A073345bi := proc(n,k) option remember; local i,j; if(0 = n) then if(0 = k) then RETURN(1); else RETURN(0); fi; fi; if(0 = k) then RETURN(0); fi; 2 * add(A073345bi(n-i-1,k-1) * add(A073345bi(i,j),j=0..(k-1)),i=0..floor((n-1)/2)) + 2 * add(A073345bi(n-i-1,k-1) * add(A073345bi(i,j),j=0..(k-2)),i=(floor((n-1)/2)+1)..(n-1)) - (`mod`(n,2))*(A073345bi(floor((n-1)/2),k-1)^2); end; %p A073345 A025581 := n -> binomial(1+floor((1/2)+sqrt(2*(1+n))),2) - (n+1); %p A073345 A002262 := n -> n - binomial(floor((1/2)+sqrt(2*(1+n))),2); %t A073345 a[0, 0] = 1; a[n_, k_]/;k2^n-1 := 0; a[n_, k_]/;1 <= n <= k <= 2^n-1 := a[n, k] = Sum[a[n-1, k-1-i](2Sum[ a[j, i], {j, 0, n-2}]+a[n-1, i]), {i, 0, k-1}]; Table[a[n, k], {n, 0, 9}, {k, 0, 9}] %t A073345 (* or *) a[0] = 0; a[1] = 1; a[n_]/;n>=2 := a[n] = Expand[1 + x a[n-1]^2]; gfT[n_] := a[n]-a[n-1]; Map[CoefficientList[ #, x, 8]&, Table[gfT[n], {n, 9}]/.{x^i_/;i>=9 ->0}] (Callan) %Y A073345 Variant: A073346. Column sums: A000108. Row sums: A001699. %Y A073345 Diagonals: A073345(n, n) = A011782(n), A073345(n+3, n+2) = A014480(n), A073345(n+2, n) = A073773(n), A073345(n+3, n) = A073774(n) - _Henry Bottomley_ and AK, see the attached notes. %Y A073345 A073429 gives the upper triangular region of this array. Cf. also A065329, A001263. %K A073345 nonn,tabl %O A073345 0,13 %A A073345 _Antti Karttunen_, Jul 31 2002 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE