# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a069286 Showing 1-1 of 1 %I A069286 #20 Feb 28 2023 04:08:58 %S A069286 4,7,6,9,3,6,2,7,6,2,0,4,4,6,9,8,7,3,3,8,1,4,1,8,3,5,3,6,4,3,1,3,0,5, %T A069286 5,9,8,0,8,9,6,9,7,4,9,0,5,9,4,7,0,6,4,4,7,0,3,8,8,2,6,9,5,9,1,9,3,8, %U A069286 3,4,4,7,7,7,4,6,4,6,7,3,3,4,8,8,6,9,5,9,1,5,8,6,9,9,8,9,0,0,9,9,4,8,0,3,3 %N A069286 Decimal expansion of constant rho satisfying Gaussian Phi(rho * sqrt(2)) = erf(rho) = 1/2. %C A069286 In Bronstein-Semendjajew, Gaussian Phi is the probability integral, i.e., 2 * Normal Distribution Function. %D A069286 Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th German ed. 1965, ch. 6.1.2. %H A069286 G. C. Greubel, Table of n, a(n) for n = 0..10000 %H A069286 Eric Weisstein's World of Mathematics, Inverse Erf. %H A069286 Eric Weisstein's World of Mathematics, Normal Distribution Function. %H A069286 Eric Weisstein's World of Mathematics, Probable Error t= rho * sqrt(2)= 06745... %e A069286 0.4769362762044698733814183536431305598089697490594706447... %t A069286 RealDigits[ InverseErf[1/2], 10, 105][[1]] (* _Robert G. Wilson v_, Oct 11 2004 *) %o A069286 (PARI) solve(x=0, 1, erfc(x)-1/2) \\ _Charles R Greathouse IV_, Oct 15 2015 %Y A069286 Cf. A069287 (continued fraction), A007680. %K A069286 nonn,cons %O A069286 0,1 %A A069286 _Frank Ellermann_, Mar 13 2002 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE