# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a062251 Showing 1-1 of 1 %I A062251 #39 Nov 20 2017 03:31:12 %S A062251 2,5,11,11,19,17,41,23,53,29,43,47,103,41,59,47,67,53,113,59,83,131, %T A062251 137,71,149,103,107,83,173,89,433,127,131,101,139,107,443,113,233,239, %U A062251 163,167,257,131,179,137,281,191,293,149,1019,311,211,431,439,167,227 %N A062251 Take minimal prime q such that n(q+1)-1 is prime (A060324), that is, the smallest prime q so that n = (p+1)/(q+1) with p prime; sequence gives values of p. %C A062251 A conjecture of Schinzel, if true, would imply that such a p always exists. %H A062251 T. D. Noe, Table of n, a(n) for n = 1..10000 %H A062251 Matthew M. Conroy, A sequence related to a conjecture of Schinzel, J. Integ. Seqs. Vol. 4 (2001), #01.1.7. %H A062251 Peter Luschny, Schinzel-Sierpinski conjecture and Calkin-Wilf tree. %H A062251 A. Schinzel and W. SierpiÅski, Sur certaines hypothèses concernant les nombres premiers, Acta Arithmetica 4 (1958), 185-208; erratum 5 (1958) p. 259. %F A062251 a(n) = (A060324(n) + 1) * n - 1. - _Reinhard Zumkeller_, Aug 28 2014 %e A062251 1 = (2+1)/(2+1), 2 = (5+1)/(2+1), 3 = (11+1)/(3+1), 4 = (11+1)/(2+1), ... %p A062251 a:= proc(n) local q; %p A062251 q:= 2; %p A062251 while not isprime(n*(q+1)-1) do %p A062251 q:= nextprime(q); %p A062251 od; n*(q+1)-1 %p A062251 end: %p A062251 seq(a(n), n=1..300); %t A062251 a[n_] := (q = 2; While[ ! PrimeQ[n*(q+1)-1], q = NextPrime[q]]; n*(q+1)-1); Table[a[n], {n, 1, 57}] (* _Jean-François Alcover_, Feb 17 2012, after Maple *) %o A062251 (Haskell) %o A062251 a062251 n = (a060324 n + 1) * n - 1 -- _Reinhard Zumkeller_, Aug 28 2014 %Y A062251 Cf. A060424. Values of q are given in A060324. %K A062251 nonn,nice,easy %O A062251 1,1 %A A062251 _N. J. A. Sloane_, Jul 01 2001 %E A062251 More terms from _Vladeta Jovovic_, Jul 02 2001 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE