# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a061594 Showing 1-1 of 1 %I A061594 #27 Aug 07 2024 09:20:33 %S A061594 1,32,408,3600,26040,166368,976640,5392704,28432288,144605184, %T A061594 714611200,3449705600,16333065216,76081271168,349524164224, %U A061594 1586790140800,7130144209024,31752978219904,140298397039232,615604372260736 %N A061594 Number of ways to place 3n nonattacking kings on a 6 X 2n chessboard. %H A061594 Vincenzo Librandi, Table of n, a(n) for n = 0..1000 %H A061594 D. E. Knuth, Nonattacking kings on a chessboard, 1994. %H A061594 Vaclav Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes [_Vaclav Kotesovec_, Feb 06 2010] %H A061594 H. S. Wilf, The problem of the kings, Elec. J. Combin. 2, 1995. %H A061594 Index entries for linear recurrences with constant coefficients, signature (19, -148, 604, -1364, 1644, -928, 192). %F A061594 G.f.: (1+13x-52x^2-20x^3+60x^4-20x^5)/((1-3x)(1-4x)^2(1-4x+2x^2)^2). %F A061594 Explicit formula: (231n-2377)*4^n - 384*3^n + (1953*sqrt(2)/2+1381+(35*sqrt(2)+99/2)*n)*(2+sqrt(2))^n + (1381-1953*sqrt(2)/2+(99/2-35*sqrt(2))*n)*(2-sqrt(2))^n. - _Vaclav Kotesovec_, Feb 06 2010 %o A061594 (PARI) a(n)=polcoeff((1+13*x-52*x^2-20*x^3+60*x^4-20*x^5)/((1-3*x)*(1-4*x)^2*(1-4*x+2*x^2)^2)+x*O(x^n),n) %Y A061594 Column k=3 of A350819. %Y A061594 Cf. A001787, A061593. %Y A061594 Equals 231*A002697(n+1) - 2608*A000302(n) - 384*A000244(n) + 1103*A007070(n-1) + 780*A006012(n+1) + (n+1)*(17*A048580(n) + 12*A007070(n+1)). %K A061594 nonn,nice %O A061594 0,2 %A A061594 Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 22 2001 %E A061594 Corrected data by _Vincenzo Librandi_, Oct 12 2011 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE