# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a059090 Showing 1-1 of 1 %I A059090 #12 Oct 24 2014 15:09:58 %S A059090 1,1,1,1,3,1,7,3,1,1,15,30,30,5,1,31,195,605,780,543,300,135,45,10,1, %T A059090 1,63,1050,9030,41545,118629,233821,329205,327915,224280,100716,29337, %U A059090 5950,910,105,7 %N A059090 Triangle T(n,m) giving number of m-element intersecting antichains on a labeled n-set or n-variable Boolean functions with m nonzero values in the Post class F(7,2), m=0,.., A037952(n). %C A059090 An antichain is called intersecting (or proper) antichain if every two members have a nonempty intersection. Row sums give the number of intersecting antichains on a labeled n-set or n-variable Boolean functions in the Post class F(7,2) or self-dual monotone Boolean functions of n+1 variables. Cf. A001206. %D A059090 Jovovic V., Kilibarda G., The number of n-variable Boolean functions in the Post class F(7,2), Belgrade, 2001, in preparation. %D A059090 Pogosyan G., Miyakawa M., Nozaki A., Rosenberg I., The Number of Clique Boolean Functions, IEICE Trans. Fundamentals, Vol. E80-A, No. 8, pp. 1502-1507, 1997/8. %H A059090 Index entries for sequences related to Boolean functions %H A059090 Pogosyan et al., The Number of Clique Boolean Functions %F A059090 T(n, 0)=1, T(n, 1)=2^n-1, T(n, 2)=A032263(n), T(n, 3)=A051303(n), T(n, 4)=A051304(n), T(n, 5)=A051305(n), T(n, 6)=A051306(n), T(n, 7)=A051307(n). %e A059090 1; %e A059090 1, 1; %e A059090 1, 3; %e A059090 1, 7, 3, 1; %e A059090 1, 15, 30, 30, 5; %e A059090 1, 31, 195, 605, 780, 543, 300, 135, 45, 10, 1; %e A059090 1, 63, 1050, 9030, 41545, 118629, 233821, 329205, 327915, 224280, 100716, 29337, 5950, 910, 105, 7; %Y A059090 Cf. A001206, A032263, A051303-A051307, A036239, A051180-A051185, A016269, A047707, A051112-A051118, A000372. %K A059090 hard,tabf,nonn %O A059090 0,5 %A A059090 _Vladeta Jovovic_, Goran Kilibarda, Dec 28 2000 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE