# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a056205 Showing 1-1 of 1 %I A056205 #10 Jun 02 2023 11:12:58 %S A056205 1,1,7,23,153,849,6128,43534,319119,2255466,15307395,98349144, %T A056205 597543497,3430839916,18653684881,96273409815,473010823993, %U A056205 2218614773950,9961651259869,42927432229913,177963663264430 %N A056205 Number of n X 6 binary matrices under row and column permutations and column complementations. %D A056205 M. A. Harrison, On the number of classes of binary matrices, IEEE Trans.Computers, 22 (1973), 1048-1051. %H A056205 Andrew Howroyd, Table of n, a(n) for n = 0..1000 %H A056205 Index entries for linear recurrences with constant coefficients, order 312. %F A056205 G.f.: 1/46080*(1/(1 - x^1)^64 + 1053/(1 - x^2)^32 + 30/(1 - x^1)^32/(1 - x^2)^16 + 4920/(1 - x^4)^16 + 180/(1 - x^1)^16/(1 - x^2)^24 + 120/(1 - x^1)^8/(1 - x^2)^28 + 160/(1 - x^1)^16/(1 - x^3)^16 + 5280/(1 - x^2)^8/(1 - x^6)^8 + 960/(1 - x^1)^8/(1 - x^2)^4/(1 - x^3)^8/(1 - x^6)^4 + 3840/(1 - x^4)^4/(1 - x^12)^4 + 640/(1 - x^1)^4/(1 - x^3)^20 + 1920/(1 - x^2)^2/(1 - x^6)^10 + 720/(1 - x^1)^8/(1 - x^2)^4/(1 - x^4)^12 + 5760/(1 - x^8)^8 + 2160/(1 - x^2)^8/(1 - x^4)^12 + 1440/(1 - x^1)^4/(1 - x^2)^6/(1 - x^4)^12 + 2304/(1 - x^1)^4/(1 - x^5)^12 + 6912/(1 - x^2)^2/(1 - x^10)^6 + 3840/(1 - x^1)^2/(1 - x^2)^1/(1 - x^3)^2/(1 - x^6)^9 + 3840/(1 - x^4)^1/(1 - x^12)^5). %Y A056205 Column k=6 of A363349. %Y A056205 Cf. A005232, A006380, A006381, A006382, A002727, A006148, A052264. %K A056205 nonn %O A056205 0,3 %A A056205 _Vladeta Jovovic_, Aug 05 2000 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE