# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a049767 Showing 1-1 of 1 %I A049767 #21 Sep 08 2022 08:44:58 %S A049767 0,1,0,1,2,0,1,0,2,0,1,5,5,2,0,1,4,3,4,2,0,1,5,3,3,8,2,0,1,4,2,0,5,8, %T A049767 2,0,1,5,0,8,8,3,8,2,0,1,4,10,6,5,10,11,8,2,0,1,5,10,6,4,4,7,10,8,2,0, %U A049767 1,4,9,4,5,0,5,4,9,8,2,0,1,5,10,4 %N A049767 Triangular array T, read by rows: T(n,k) = (k^2 mod n) + (n^2 mod k), for k = 1..n and n >= 1. %H A049767 G. C. Greubel, Rows n = 1..100 of triangle, flattened %F A049767 T(n, k) = A048152(n, k) + A049759(n, k). - _Michel Marcus_, Nov 21 2019 %e A049767 Triangle T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows: %e A049767 0; %e A049767 1, 0; %e A049767 1, 2, 0; %e A049767 1, 0, 2, 0; %e A049767 1, 5, 5, 2, 0; %e A049767 1, 4, 3, 4, 2, 0; %e A049767 1, 5, 3, 3, 8, 2, 0; %e A049767 1, 4, 2, 0, 5, 8, 2, 0; %e A049767 1, 5, 0, 8, 8, 3, 8, 2, 0; %e A049767 1, 4, 10, 6, 5, 10, 11, 8, 2, 0; %e A049767 ... %p A049767 seq(seq( `mod`(k^2, n) + `mod`(n^2, k), k = 1..n), n = 1..15); # _G. C. Greubel_, Dec 13 2019 %t A049767 Table[PowerMod[k,2,n] + PowerMod[n,2,k], {n,15}, {k,n}]//Flatten (* _G. C. Greubel_, Dec 13 2019 *) %o A049767 (PARI) T(n,k) = lift(Mod(k,n)^2) + lift(Mod(n,k)^2); %o A049767 for(n=1,15, for(k=1,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Dec 13 2019 %o A049767 (Magma) [[Modexp(k,2,n) + Modexp(n,2,k): k in [1..n]]: n in [1..15]]; // _G. C. Greubel_, Dec 13 2019 %o A049767 (Sage) [[power_mod(k,2,n) + power_mod(n,2,k) for k in (1..n)] for n in (1..15)] # _G. C. Greubel_, Dec 13 2019 %o A049767 (GAP) Flat(List([1..15], n-> List([1..n], k-> PowerMod(k,2,n) + PowerMod(n,2,k) ))); # _G. C. Greubel_, Dec 13 2019 %Y A049767 Row sums are in A049768. %Y A049767 Cf. A048152, A049759. %K A049767 nonn,tabl %O A049767 1,5 %A A049767 _Clark Kimberling_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE