# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a038729 Showing 1-1 of 1 %I A038729 #25 Feb 01 2021 05:03:09 %S A038729 12,132,1332,13452,134892,1353732,13536612,135457932,1352852292, %T A038729 13517235732,134908128732,1346796414252,13435850843172 %N A038729 Configurations of linear chains in a 6-dimensional hypercubic lattice. %C A038729 In the notation of Nemirovsky et al. (1992), a(n), the n-th term of the current sequence is C_{n,m} with m=0 (and d=6). Here, for a d-dimensional hypercubic lattice, C_{n,m} is "the number of configurations of an n-bond self-avoiding chain with m neighbor contacts." (For d=2, we have C(n,0) = A173380(n); for d=3, we have C(n,0) = A174319(n); for d=4, we have C(n,0) = A034006(n); and for d=5, we have C(n,0) = A038726(n).) - _Petros Hadjicostas_, Jan 03 2019 %H A038729 M. E. Fisher and B. J. Hiley, Configuration and free energy of a polymer molecule with solvent interaction, J. Chem. Phys., 34 (1961), 1253-1267. %H A038729 A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108; see Eq. 5 (p. 1090) and Table 1 (p. 1090). %Y A038729 Cf. A002932, A002934, A034006, A038726, A173380, A174313, A174319. %K A038729 nonn,more %O A038729 1,1 %A A038729 _N. J. A. Sloane_, May 02 2000 %E A038729 Terms a(10) and a(11) were copied from Table 1 (p. 1090) in the paper by Nemirovsky et al. (1992) by _Petros Hadjicostas_, Jan 03 2019 %E A038729 Name edited by _Petros Hadjicostas_, Jan 03 2019 %E A038729 a(12)-a(13) from _Sean A. Irvine_, Feb 01 2021 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE