# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a036745 Showing 1-1 of 1 %I A036745 #23 Dec 27 2022 10:50:49 %S A036745 1026753849,1042385796,1098524736,1237069584,1248703569,1278563049, %T A036745 1285437609,1382054976,1436789025,1503267984,1532487609,1547320896, %U A036745 1643897025,1827049536,1927385604,1937408256,2076351489,2081549376,2170348569,2386517904,2431870596 %N A036745 Squares including each digit exactly once. %C A036745 The last term of this sequence is a(87) = 9814072356. %H A036745 Nathaniel Johnston, Table of n, a(n) for n = 1..87 (full sequence) %p A036745 lim:=floor(sqrt(9876543210)): for n from floor(sqrt(1023456789)) to lim do d:=[op(convert(n^2, base, 10))]: pandig:=true: for k from 0 to 9 do if(numboccur(k, d)<>1)then pandig:=false: break: fi: od: if(pandig)then printf("%d, ",n^2): fi: od: # _Nathaniel Johnston_, Jun 22 2011 %t A036745 Select[ Range[ Floor[ Sqrt[ 1023456789 ] ], Floor[ Sqrt[ 9876543210 ] ] ]^2, Union[ DigitCount[ # ] ]== {1} & ] %t A036745 Select[FromDigits/@Permutations[Range[0,9]],IntegerLength[#]==10&&IntegerQ[ Sqrt[#]]&] (* _Harvey P. Dale_, Apr 09 2012 *) %o A036745 (Python) %o A036745 def c(n): return len(set(str(n))) == 10 %o A036745 def afull(): return [k*k for k in range(31622, 10**5) if c(k*k)] %o A036745 print(afull()) # _Michael S. Branicky_, Dec 27 2022 %Y A036745 Cf. A156977 (square roots). %K A036745 fini,full,nonn,base %O A036745 1,1 %A A036745 _David W. Wilson_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE