# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a030629 Showing 1-1 of 1 %I A030629 #60 Sep 14 2024 06:52:59 %S A030629 1024,59049,9765625,282475249,25937424601,137858491849,2015993900449, %T A030629 6131066257801,41426511213649,420707233300201,819628286980801, %U A030629 4808584372417849,13422659310152401 %N A030629 Numbers with 11 divisors. %C A030629 Let p be a prime. Then the n-th number with p divisors is equal to prime(n)^(p-1). - _Omar E. Pol_, May 06 2008 %H A030629 R. J. Mathar, Table of n, a(n) for n = 1..1000 %H A030629 OEIS Wiki, Index entries for number of divisors %F A030629 a(n) = A000040(n)^10, i.e. tenth power of n-th prime. - _Henry Bottomley_, Aug 20 2001 %F A030629 From _Amiram Eldar_, Jan 24 2021: (Start) %F A030629 Product_{n>=1} (1 + 1/a(n)) = zeta(10)/zeta(20) = 16368226875/(174611*Pi^10) = A013668/A013678. %F A030629 Product_{n>=1} (1 - 1/a(n)) = 1/zeta(10) = 93555/Pi^10 = 1/A013668. (End) %t A030629 (Prime@Range@30)^10 (* _Vladimir Joseph Stephan Orlovsky_, Apr 11 2011 *) %o A030629 (Sage) %o A030629 [p**10 for p in prime_range(100)] %o A030629 # _Zerinvary Lajos_, May 16 2007 %o A030629 (Magma) [p^10: p in PrimesUpTo(300)]; // _Vincenzo Librandi_, Mar 27 2014 %o A030629 (PARI) is(n)=isprimepower(n)==10 \\ _Charles R Greathouse IV_, Jun 19 2016 %o A030629 (Python) %o A030629 from sympy import prime %o A030629 def A030629(n): return prime(n)**10 # _Chai Wah Wu_, Sep 13 2024 %Y A030629 Cf. A000005, A000040, A001248, A008454, A009087, A030514, A030516. %Y A030629 Cf. A013668, A013678. %K A030629 nonn,easy %O A030629 1,1 %A A030629 _Jeff Burch_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE