# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a028374 Showing 1-1 of 1 %I A028374 #59 Apr 09 2023 07:54:01 %S A028374 0,2,3,5,6,8,9,20,22,23,25,26,28,29,30,32,33,35,36,38,39,50,52,53,55, %T A028374 56,58,59,60,62,63,65,66,68,69,80,82,83,85,86,88,89,90,92,93,95,96,98, %U A028374 99,200,202,203,205,206,208,209,220,222,223,225,226,228,229,230,232,233 %N A028374 Numbers that have only curved digits {0, 3, 6, 8, 9} or digits that are both curved and linear {2, 5}. %C A028374 From _Bernard Schott_, Mar 26 2023: (Start) %C A028374 Previous name was: "Curved numbers: numbers that have only curved digits (0, 2, 3, 5, 6, 8, 9)"; but in fact, the curved numbers form the sequence A072960. %C A028374 This sequence allows all digits except for 1, 4 and 7. (End) %H A028374 K. D. Bajpai, Table of n, a(n) for n = 1..10000 %H A028374 Index entries for 10-automatic sequences. %e A028374 From _K. D. Bajpai_, Sep 07 2014: (Start) %e A028374 206 is in the sequence because it has only curved digits 2, 0 and 6. %e A028374 208 is in the sequence because it has only curved digits 2, 0 and 8. %e A028374 2035689 is the smallest number having all the curved digits. %e A028374 (End) %p A028374 N:= 3: S:= {0, 2, 3, 5, 6, 8, 9}: K:= S: %p A028374 for j from 2 to N do %p A028374 K:= map(t -> seq(10*t+s, s=S), K); %p A028374 od: %p A028374 print( K); # _K. D. Bajpai_, Sep 07 2014 %t A028374 f[n_] := Block[{id = IntegerDigits[n], curve = {0, 2, 3, 5, 6, 8, 9}}, If[ Union[ Join[id, curve]] == curve, True, False]]; Select[ Range[0, 240], f[ # ] & ] %t A028374 Select[Range[0, 249], Union[DigitCount[#] * {1, 0, 0, 1, 0, 0, 1, 0, 0, 0}] == {0} &] (* _Alonso del Arte_, May 23 2014 *) %t A028374 Select[Range[0,500],Intersection[IntegerDigits[#],{1,4,7}]=={}&] (* _K. D. Bajpai_, Sep 07 2014 *) %o A028374 (Python) %o A028374 for n in range(10**3): %o A028374 s = str(n) %o A028374 if not (s.count('1') + s.count('4') + s.count('7')): %o A028374 print(n,end=', ') # _Derek Orr_, Sep 19 2014 %o A028374 (Magma) [n: n in [0..300] | Set(Intseq(n)) subset [0,2,3,5, 6,8,9] ]; // _Vincenzo Librandi_, Sep 19 2014 %Y A028374 Cf. A028373 (straight digits: 1, 4, 7), A072960 (curved digits: 0, 3, 6, 8, 9), A072961 (both straight and curved digits: 2, 5). %Y A028374 Combinations: A082741 (digits: 1, 2, 4, 5, 7), A361780 (digits: 0, 1, 3, 4, 6, 7, 8, 9). %Y A028374 Cf. A034470 (subsequence of primes). %K A028374 base,easy,nonn %O A028374 1,2 %A A028374 Greg Heil (gheil(AT)scn.org), Dec 11 1999 %E A028374 Corrected and extended by _Rick L. Shepherd_, May 21 2003 %E A028374 Offset corrected by _Arkadiusz Wesolowski_, Aug 15 2011 %E A028374 Definition clarified by _Bernard Schott_, Mar 25 2023 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE