editing
proposed
editing
proposed
Recurrence: (n+6)*a(n)=256*(n+1)*a(n-6)-128*(n+3)*a(n-4)+4*(5*n+23)*a(n-2), for even n. - _Fung Lam, _, Mar 31 2014
proposed
editing
editing
proposed
Recurrence: (n+6)*a(n)=256*(n+1)*a(n-6)-128*(n+3)*a(n-4)+4*(5*n+23)*a(n-2), for even n. - Fung Lam, Mar 31 2014
proposed
editing
editing
proposed
0 = a(n) * (+64*a(n+1) - 8*a(n+3)) + a(n+2) * (-8*a(n+1) + a(n+3)) if n>=0. - Michael Somos, Apr 07 2014
G.f. = 1 + 2*x + 6*x^2 + 16*x^3 + 46*x^4 + 128*x^5 + 364*x^6 + 1024*x^7 + ...
proposed
editing
editing
proposed
proposed
editing
editing
proposed
Hankel transform is 2^n. [_- _Paul Barry_ Jan 19 2011]
a(n) = sum{k=0..floor((n+1)/2), (C(n,k)-C(n,k-1))*A000129(n-2k+1)}. [_- _Paul Barry_ Jan 19 2011]
a(n) = 2^n*sum(j=0..n/2, binomial((n-1)/2,j)); [_. - _Vladimir Kruchinin_, May 18 2011]
proposed
editing