login

A359076 revision #17


A359076
Numbers that have at least two proper divisors with an equal sum of digits.
3
20, 22, 24, 30, 36, 40, 42, 44, 48, 50, 52, 54, 60, 63, 66, 70, 72, 80, 81, 84, 88, 90, 96, 100, 102, 104, 105, 108, 110, 112, 115, 120, 124, 126, 130, 132, 135, 136, 140, 144, 147, 150, 154, 156, 160, 162, 165, 168, 170, 175, 176, 180, 189, 190, 192, 198, 200
OFFSET
1,1
COMMENTS
If x is in A359074 then x*y is a term for all y >= 2. - Robert Israel, Jan 19 2023
LINKS
EXAMPLE
24 is a term since its proper divisors 3 and 12 have an equal sum of digits.
MAPLE
q:= n-> (s-> is(nops(s)>nops({s[]})))(map(x-> add(i, i=convert(x,
base, 10)), [(numtheory[divisors](n) minus {n})[]])):
select(q, [$1..200])[]; # Alois P. Heinz, Dec 18 2022
MATHEMATICA
a={}; For[k=1, k<=210, k++, If[Length[Intersection[Table[Total[Part[IntegerDigits[Divisors[k]], i]], {i, DivisorSigma[0, k]-1}]]] < DivisorSigma[0, k]-1, AppendTo[a, k]]]; a
PROG
(PARI) isok(k) = my(d=setminus(Set(divisors(k)), [k])); #Set(apply(sumdigits, d)) < #d; \\ Michel Marcus, Dec 19 2022
CROSSREFS
Complement of A359077.
Cf. A000005, A007953, A359074 (all the divisors).
Sequence in context: A095445 A094203 A095439 * A036227 A328636 A171953
KEYWORD
nonn,base
AUTHOR
Stefano Spezia, Dec 15 2022
STATUS
proposed