OFFSET
0,4
COMMENTS
If these partitions are "flattened" into a simple partition, the resulting partitions are those for which any part size present with multiplicity k implies the presence of at least k(k-1)/2 larger parts. E.g., [3,1|1] flattens to [3,1^2], 1 has multiplicity 2, so there must be at least 2*1/2 = 1 part larger than 1 - which is the 3.
REFERENCES
B. Gordon, Multirowed partitions with strict decrease along columns (Notes on plane partitions IV.), Symposia Amer. Math. Soc. 19 (1971) 91-100.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..85
EXAMPLE
For n = 5, we have the 6 partitions [5], [4,1], [4|1], [3,2], [3|2] and [3,1|1].
From Gus Wiseman, Nov 15 2018: (Start)
The a(6) = 10 plane partitions:
6 5 1 4 2 3 2 1
.
5 4 1 4 3 2 3 1
1 1 2 1 2
.
3
2
1
(End)
PROG
prs2mat[prs_]:=Table[Count[prs, {i, j}], {i, Union[First/@prs]}, {j, Union[Last/@prs]}];
multsubs[set_, k_]:=If[k==0, {{}}, Join@@Table[Prepend[#, set[[i]]]&/@multsubs[Drop[set, i-1], k-1], {i, Length[set]}]];
Table[Length[Select[multsubs[Tuples[Range[n], 2], n], And[Union[First/@#]==Range[Max@@First/@#], Union[Last/@#]==Range[Max@@Last/@#], And@@(OrderedQ[#, Greater]&/@prs2mat[#]), And@@(OrderedQ[#, Greater]&/@Transpose[prs2mat[#]])]&]], {n, 5}] (* Gus Wiseman, Nov 15 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Franklin T. Adams-Watters, Mar 16 2006
EXTENSIONS
Clarified definition, added 30 terms and reference. - Dennis K Moore, Jan 12 2011
a(40)-a(44) from Alois P. Heinz, Sep 26 2018
STATUS
editing