OFFSET
1,2
COMMENTS
Starting from a(27410) = 316064952537 the sequence includes the 8th sign-changing zone predicted by C. Bays et al back in 2001. The sequence with the first 8 sign-changing zones contains 419467 terms (see a-file) with a(419467) = 330797040309 as its last term. - Sergei D. Shchebetov, Oct 16 2017
REFERENCES
Stan Wagon, The Power of Visualization, Front Range Press, 1994, pp. 2-3.
LINKS
Andrey S. Shchebetov and Sergei D. Shchebetov, Table of n, a(n) for n = 1..100000 (first 1000 terms from T. D. Noe)
A. Alahmadi, M. Planat, P. Solé, Chebyshev's bias and generalized Riemann hypothesis, HAL Id: hal-00650320.
C. Bays and R. H. Hudson, Numerical and graphical description of all axis crossing regions for moduli 4 and 8 which occur before 10^12, International Journal of Mathematics and Mathematical Sciences, vol. 2, no. 1, pp. 111-119, 1979.
C. Bays, K. Ford, R. H. Hudson and M. Rubinstein, Zeros of Dirichlet L-functions near the real axis and Chebyshev's bias, J. Number Theory 87 (2001), pp. 54-76.
M. Deléglise, P. Dusart, X. Roblot, Counting Primes in Residue Classes, Mathematics of Computation, American Mathematical Society, 2004, 73 (247), pp. 1565-1575.
A. Granville, G. Martin, Prime Number Races, Amer. Math. Monthly 113 (2006), no. 1, 1-33.
M. Rubinstein, P. Sarnak, Chebyshev’s bias, Experimental Mathematics, Volume 3, Issue 3, 1994, pp. 173-197.
Eric Weisstein's World of Mathematics, Prime Quadratic Effect.
MATHEMATICA
Flatten[ Position[ FoldList[ Plus, 0, Mod[ Prime[ Range[ 2, 50900 ] ], 4 ]-2 ], 0 ] ]
PROG
(PARI) lista(nn) = {nbp = 0; nbm = 0; forprime(p=2, nn, if (((p-1) % 4) == 0, nbp++, if (((p+1) % 4) == 0, nbm++)); if (nbm == nbp, print1(primepi(p), ", ")); ); } \\ Michel Marcus, Nov 20 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved