login
A378103
Triangle read by rows: T(n,k) is the number of n-node connected unsensed planar maps with an external face and k triangular internal faces, n >= 3, 1 <= k <= 2*n - 5.
6
1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 0, 2, 4, 4, 5, 4, 0, 0, 2, 6, 10, 14, 14, 18, 16, 0, 0, 0, 7, 18, 35, 49, 63, 69, 88, 78, 0, 0, 0, 5, 28, 74, 131, 204, 274, 345, 396, 489, 457, 0, 0, 0, 0, 26, 126, 304, 574, 893, 1290, 1708, 2137, 2503, 3071, 2938, 0, 0, 0, 0, 13, 159, 582, 1396, 2613, 4274, 6270, 8709, 11433, 14227, 16905, 20667, 20118
OFFSET
3,8
COMMENTS
The planar maps considered are without loops or isthmuses.
In other words, a(n) is the number of embeddings in the plane of connected bridgeless planar simple graphs with n vertices and k triangular internal faces.
The number of edges is n + k - 1.
The nonzero terms in row n range from k = floor(n/2) through 2*n-5 and, thus, the number of nonzero terms is 2n - floor(n/2) - 4 = A001651(n-2).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 3..2306 (rows 3..50)
FORMULA
T(n, 2*n-5) = A002713(n-3).
T(n,k) = (A378336(n,k) + A378340(n,k))/2.
EXAMPLE
Triangle begins:
n\k 1 2 3 4 5 6 7 8 9 10 11
---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
3 1
4 0 1 1
5 0 1 1 2 1
6 0 0 2 4 4 5 4
7 0 0 2 6 10 14 14 18 16
8 0 0 0 7 18 35 49 63 69 88 78
PROG
(PARI) my(A=A378103rows(10)); for(i=1, #A, print(A[i])) \\ See PARI link in A378340 for program code. - Andrew Howroyd, Nov 25 2024
CROSSREFS
Row sums are A377785.
Cf. A001651, A002713, A003094, A169808, A378336 (sensed), A378340 (achiral).
The final 3 terms of each row are in A002713, A005500, A005501.
Sequence in context: A059220 A261630 A301503 * A378336 A059431 A289358
KEYWORD
nonn,tabf
AUTHOR
Ya-Ping Lu, Nov 16 2024
EXTENSIONS
a(39) onwards from Andrew Howroyd, Nov 25 2024
STATUS
approved