OFFSET
3,8
COMMENTS
The planar maps considered are without loops or isthmuses.
In other words, a(n) is the number of embeddings in the plane of connected bridgeless planar simple graphs with n vertices and k triangular internal faces.
The number of edges is n + k - 1.
The nonzero terms in row n range from k = floor(n/2) through 2*n-5 and, thus, the number of nonzero terms is 2n - floor(n/2) - 4 = A001651(n-2).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 3..2306 (rows 3..50)
Ya-Ping Lu, Illustration of initial terms
EXAMPLE
Triangle begins:
n\k 1 2 3 4 5 6 7 8 9 10 11
---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
3 1
4 0 1 1
5 0 1 1 2 1
6 0 0 2 4 4 5 4
7 0 0 2 6 10 14 14 18 16
8 0 0 0 7 18 35 49 63 69 88 78
PROG
(PARI) my(A=A378103rows(10)); for(i=1, #A, print(A[i])) \\ See PARI link in A378340 for program code. - Andrew Howroyd, Nov 25 2024
CROSSREFS
Row sums are A377785.
KEYWORD
nonn,tabf
AUTHOR
Ya-Ping Lu, Nov 16 2024
EXTENSIONS
a(39) onwards from Andrew Howroyd, Nov 25 2024
STATUS
approved