login
A377991
Numbers k such that A351568(k) and A351569(k) are not coprime, where A351568 and A351569 are the sum of divisors of the largest unitary divisor of n that is a square, and of the largest unitary divisor of n that is an exponentially odd number, respectively.
2
52, 98, 156, 164, 245, 260, 294, 332, 338, 364, 388, 392, 468, 490, 492, 539, 556, 572, 668, 722, 724, 735, 780, 820, 833, 845, 882, 884, 892, 927, 972, 976, 980, 988, 996, 1004, 1014, 1078, 1092, 1125, 1127, 1148, 1164, 1172, 1176, 1196, 1228, 1274, 1300, 1352, 1396, 1404, 1421, 1470, 1476, 1508, 1525, 1568, 1573
OFFSET
1,1
FORMULA
{k such that gcd(A351568(n),A351569(n)) > 1}.
{k such that A377990(k) > A051027(k)}.
EXAMPLE
A351568(52) = 7 and A351569(52) = 14, so they share a factor (7), and therefore 52 is included as a term.
PROG
(PARI)
A350388(n) = { my(m=1, f=factor(n)); for(k=1, #f~, if(0==(f[k, 2]%2), m *= (f[k, 1]^f[k, 2]))); (m); };
A351568(n) = sigma(A350388(n));
isA377991(n) = (1<gcd(A351568(n), sigma(n)/A351568(n)));
CROSSREFS
Positions k where A377990(k) is larger than A051027(k).
Subsequence of A336548.
Sequence in context: A234099 A026067 A039475 * A274338 A094552 A236461
KEYWORD
nonn,new
AUTHOR
Antti Karttunen, Nov 15 2024
STATUS
approved