login
A377743
E.g.f. satisfies A(x) = exp(x) / (1 - x * A(x))^3.
4
1, 4, 43, 853, 25141, 989581, 48885187, 2910389875, 202958554057, 16233163690537, 1465257396236551, 147359765665925143, 16341437664329027389, 1981169884084699982701, 260701144663332062732491, 37007345616327485166160651, 5637148375602304430334748945, 917186940500490837457393476817
OFFSET
0,2
FORMULA
a(n) = n! * Sum_{k=0..n} (k+1)^(n-k-1) * binomial(4*k+2,k)/(n-k)!.
PROG
(PARI) a(n) = n!*sum(k=0, n, (k+1)^(n-k-1)*binomial(4*k+2, k)/(n-k)!);
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Nov 06 2024
STATUS
approved