login
A377596
a(n) = (a(n-1) + a(n-2))^5 for n>=2 where a(0) = 0, a(1) = 1
0
0, 1, 1, 32, 39135393, 91801604643057285538237803582587890625
OFFSET
0,4
COMMENTS
A second quintic Fibonacci sequence; compare to A112980.
a(6) contains 190 digits and is too large to display here.
FORMULA
a(n) = (a(n-1) + a(n-2))^5.
a(n) = A112980(n)^5.
EXAMPLE
a(3) = 32 = (1+1)^5 = A112980(3)^5.
MATHEMATICA
Module[{a, n}, RecurrenceTable[{a[0] == 0, a[1] == 1, a[n] == (a[n-1] + a[n-2])^5}, a, {n, 6}]] (* or *)
A377596[n_] := If[n < 2, n, (A377596[n-1] + A377596[n-2])^5];
Array[A377596, 7, 0] (* Paolo Xausa, Nov 30 2024 *)
CROSSREFS
Sequence in context: A357566 A265217 A368327 * A224087 A224084 A351751
KEYWORD
nonn,easy,new
AUTHOR
Lyle Blosser, Nov 29 2024
STATUS
approved