login
A377595
E.g.f. satisfies A(x) = exp( x * A(x) / (1-x) ) / (1-x).
2
1, 2, 11, 103, 1377, 24101, 523813, 13636463, 414246017, 14396807161, 563682761541, 24559156435595, 1178780540094193, 61810491468265541, 3515914378433242997, 215647516162031069191, 14187967957218808201089, 996767406049512569338481, 74478502236949781909301253
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( -LambertW(-x/(1-x)^2) )/(1-x).
a(n) = n! * Sum_{k=0..n} (k+1)^(k-1) * binomial(n+k,n-k)/k!.
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x/(1-x)^2))/(1-x)))
(PARI) a(n) = n!*sum(k=0, n, (k+1)^(k-1)*binomial(n+k, n-k)/k!);
CROSSREFS
Cf. A361598.
Sequence in context: A339081 A081716 A334240 * A099713 A277461 A277470
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 14 2024
STATUS
approved