login
A377576
E.g.f. satisfies A(x) = (1 + x * exp(x) * A(x))^4.
4
1, 4, 52, 1116, 34408, 1394340, 70298424, 4248802516, 299752943200, 24196951718532, 2200519882434280, 222683725755611604, 24824104612186789584, 3023063956714780554628, 399343825987950226379416, 56879649386095684434783060, 8689968793295620150120679104
OFFSET
0,2
FORMULA
E.g.f.: B(x)^4, where B(x) is the e.g.f. of A364987.
a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(4*k+4,k)/( (k+1)*(n-k)! ).
PROG
(PARI) a(n) = n!*sum(k=0, n, k^(n-k)*binomial(4*k+4, k)/((k+1)*(n-k)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 02 2024
STATUS
approved