login
A377574
E.g.f. satisfies A(x) = (1 + x * exp(x) * A(x))^2.
3
1, 2, 14, 150, 2264, 44370, 1073772, 30998954, 1041094448, 39909978594, 1720526113460, 82422717484602, 4345035540566184, 250012958308399442, 15594180423126432428, 1048169467357831893930, 75535629221800163853152, 5810132660615400890909634, 475146028302302130377698404
OFFSET
0,2
FORMULA
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A295238.
a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(2*k+2,k)/( (k+1)*(n-k)! ).
a(n) ~ 2^(5/2) * sqrt(1 + LambertW(1/4)) * n^(n-1) / (LambertW(1/4)^n * exp(n)). - Vaclav Kotesovec, Nov 02 2024
PROG
(PARI) a(n) = n!*sum(k=0, n, k^(n-k)*binomial(2*k+2, k)/((k+1)*(n-k)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 02 2024
STATUS
approved