login
A377539
The number of iterations of the map x -> x + A000005(x), starting from n, until reaching an even number, and always at least one iteration taken.
0
1, 1, 4, 3, 3, 1, 2, 1, 1, 1, 6, 1, 5, 1, 4, 3, 4, 1, 3, 1, 2, 1, 2, 1, 1, 1, 16, 1, 16, 1, 15, 1, 14, 1, 13, 11, 13, 1, 12, 1, 12, 1, 11, 1, 10, 1, 2, 1, 1, 1, 9, 1, 9, 1, 8, 1, 7, 1, 7, 1, 6, 1, 5, 5, 5, 1, 5, 1, 4, 1, 4, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 38, 1, 37, 1, 36, 1, 36, 1, 35, 1, 35
OFFSET
1,3
COMMENTS
The iteration step is x -> A062249(x).
a(n) = 1 if and only if n is an odd square or an even nonsquare. - Robert Israel, Oct 31 2024
EXAMPLE
For n = 2, there is a(2) = 1 iteration to an even number: 2 -> 4 (with at least one iteration so 2 itself is not the even number target).
For n = 3 there are a(3) = 4 iterations to reach an even number: 3 -> 5 -> 7 -> 9 -> 12.
MAPLE
f:= proc(n) local x, i;
x:= n;
for i from 1 do x:= x + numtheory:-tau(x); if x::even then return i fi od
end proc:
map(f, [$1..200]); # Robert Israel, Oct 31 2024
MATHEMATICA
a[n_] := -1 + Length@ NestWhileList[# + DivisorSigma[0, #] &, n, OddQ, {2, 1}]; Array[a, 100] (* Amiram Eldar, Oct 31 2024 *)
CROSSREFS
Cf. A000005, A062249 (step), A064491 (trajectory of 1).
Sequence in context: A016699 A060373 A090280 * A177158 A177034 A177933
KEYWORD
nonn,look,new
AUTHOR
Ctibor O. Zizka, Oct 31 2024
STATUS
approved