login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377484
a(n) = Product_{d|n, d>1} (d - 1).
6
1, 1, 2, 3, 4, 10, 6, 21, 16, 36, 10, 330, 12, 78, 112, 315, 16, 1360, 18, 2052, 240, 210, 22, 53130, 96, 300, 416, 6318, 28, 146160, 30, 9765, 640, 528, 816, 1570800, 36, 666, 912, 560196, 40, 639600, 42, 27090, 39424, 990, 46, 37456650, 288, 42336, 1600, 45900, 52, 1874080, 2160
OFFSET
1,3
LINKS
FORMULA
a(n) = Product_{k=2..A000005(n)} (A027750(n,k) - 1).
a(p^n) = Product_{k=1..n} (p^k - 1), where p is prime, and n an integer.
a(2^n) = A005329(n).
a(3^n) = A027871(n).
a(5^n) = A027872(n).
a(7^n) = A027875(n).
a(11^n) = A027879(n).
From Amiram Eldar, Nov 02 2024: (Start)
a(n) = n-1 if and only if n is in A175787 (i.e., n = 4 or n is prime).
a(n) == 1 (mod 2) if and only if n is a power of 2 (A000079). (End)
EXAMPLE
a(12) = (2-1)*(3-1)*(4-1)*(6-1)*(12-1) = 1*2*3*5*11 = 330.
MAPLE
with(numtheory): seq(mul(d-1, d in divisors(n) minus {1}), n=1..80);
MATHEMATICA
a[n_] := Times @@ (Rest@ Divisors[n] - 1); Array[a, 60] (* Amiram Eldar, Nov 01 2024 *)
PROG
(PARI) a(n) = my(d=divisors(n)); prod(k=2, #d, d[k]-1); \\ Michel Marcus, Oct 30 2024
KEYWORD
nonn,easy
AUTHOR
Ridouane Oudra, Oct 29 2024
STATUS
approved