%I #10 Oct 25 2024 09:29:11
%S 1,1,1,4,15,96,665,6028,60907,725560,9591549,142574004,2323440119,
%T 41519079616,803667844993,16797423268252,376458083887875,
%U 9014414549836296,229564623594841637,6197477089425914692,176767174407208663759,5312208220728020517136,167760328500471584529321
%N E.g.f. satisfies A(x) = 1 + (exp(x*A(x)) - 1)/A(x).
%F a(n) = Sum_{k=0..floor((n+1)/2)} (n-k)!/(n-2*k+1)! * Stirling2(n,k).
%o (PARI) a(n) = sum(k=0, (n+1)\2, (n-k)!/(n-2*k+1)!*stirling(n, k, 2));
%Y Cf. A052894, A367162, A367163.
%Y Cf. A367180, A377324.
%K nonn
%O 0,4
%A _Seiichi Manyama_, Oct 24 2024