%I #10 Oct 25 2024 09:28:47
%S 1,1,5,53,884,20234,589834,20903700,872660256,41944510752,
%T 2281437791448,138539360885760,9290720296262976,681965664411820944,
%U 54384461861952738528,4682101594725064872768,432815761314471190599936,42757813607285233998385920,4495579313771176952867958528
%N E.g.f. satisfies A(x) = 1 - log(1 - x*A(x)^3)/A(x).
%F a(n) = Sum_{k=0..n} (3*n-k)!/(3*n-2*k+1)! * |Stirling1(n,k)|.
%o (PARI) a(n) = sum(k=0, n, (3*n-k)!/(3*n-2*k+1)!*abs(stirling(n, k, 1)));
%Y Cf. A365546, A367139, A367152, A377327.
%Y Cf. A365438, A377325.
%K nonn
%O 0,3
%A _Seiichi Manyama_, Oct 24 2024