login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376889
Numbers k such that A376888(k) = 2*k.
0
6, 60, 90, 336, 5040, 87360, 764400, 11466000, 620568000, 9478560000, 14217840000, 22805874000
OFFSET
1,1
COMMENTS
a(12) > 7*10^10, if it exists.
28279283760000, 282792837600000 and 1583639890560000 are also terms.
k! is a term for k = 3 and 7, and for no other factorial of k < 10^4.
MATHEMATICA
ff[q_, s_] := (q^(s + 1) - 1)/(q - 1); f[p_, e_] := Module[{k = e, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0 || r != 0, If[r > 0, AppendTo[s, {p^(m - 1)!, r}]; ]; m++]; Times @@ ff @@@ s]; fsigma[1] = 1; fsigma[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[10^6], fsigma[#] == 2*# &]
PROG
(PARI) fdigits(n) = {my(k = n, m = 2, r, s = []); while([k, r] = divrem(k, m); k != 0 || r != 0, s = concat(s, r); m++); s; }
fsigma(n) = {my(f = factor(n), p = f[, 1], e = f[, 2], d); prod(i = 1, #p, prod(j = 1, #d=fdigits(e[i]), (p[i]^(j!*(d[j]+1)) - 1)/(p[i]^j! - 1))); }
is(k) = fsigma(k) == 2*k;
CROSSREFS
Cf. A376888.
Subsequence of A023196.
Similar sequences: A007357, A038182, A074849, A097464, A331108, A331111.
Sequence in context: A334406 A322486 A323757 * A331108 A324707 A007357
KEYWORD
nonn,base,more
AUTHOR
Amiram Eldar, Oct 08 2024
STATUS
approved