login
A376577
E.g.f. A(x) satisfies A(x) = exp(x*(1 + x^2)*A(x)).
1
1, 1, 3, 22, 197, 2256, 32887, 574624, 11690121, 272279296, 7147894571, 208828168704, 6721780173517, 236392313927680, 9019055052313503, 371059593102831616, 16376333449953390353, 771800236449984086016, 38687542995415388643667, 2055303661966287413837824
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = n! * Sum_{k=0..floor(n/3)} (n-2*k+1)^(n-2*k-1) * binomial(n-2*k,k)/(n-2*k)!.
E.g.f.: exp( -LambertW(-x*(1+x^2)) ).
a(n) ~ sqrt(3 - 2*r*exp(1)) * n^(n-1) / (exp(n-1) * r^n), where r = 0.3314625163779096554724... is the real root of the equation r*(1 + r^2) = exp(-1). - Vaclav Kotesovec, Sep 29 2024
PROG
(PARI) a(n) = n!*sum(k=0, n\3, (n-2*k+1)^(n-2*k-1)*binomial(n-2*k, k)/(n-2*k)!);
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x*(1+x^2)))))
CROSSREFS
Sequence in context: A098618 A357031 A207326 * A362654 A376575 A006783
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 28 2024
STATUS
approved