login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376438
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x^2*(exp(x) - 1))^2 ).
0
1, 0, 0, 12, 24, 40, 10860, 85764, 446992, 57788784, 1008736020, 10835748220, 965748698904, 28637803537512, 519426455756572, 37968161216666100, 1626852405783259680, 44177643556314690784, 2957776991432290423332, 163869985958022692795628, 6132727345895339422510120, 405409522521171206216078040
OFFSET
0,4
FORMULA
E.g.f. A(x) satisfies A(x) = 1/(1 - x^2*A(x)^2 * (exp(x*A(x)) - 1))^2.
a(n) = (2 * n!/(2*n+2)!) * Sum_{k=0..floor(n/3)} (2*n+k+1)! * Stirling2(n-2*k,k)/(n-2*k)!.
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1-x^2*(exp(x)-1))^2)/x))
(PARI) a(n) = 2*n!*sum(k=0, n\3, (2*n+k+1)!*stirling(n-2*k, k, 2)/(n-2*k)!)/(2*n+2)!;
CROSSREFS
Cf. A375662.
Sequence in context: A026365 A051435 A375662 * A187975 A190566 A361856
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 22 2024
STATUS
approved