login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375912
Primes p such that p*nextprime(p)+1 and p + nextprime(p)+1 are both perfect squares where nextprime(p) is the smallest prime that is larger than p.
0
3, 11, 59, 179, 311, 419, 2111, 3119, 5099, 21011, 21839, 24419, 30011, 37811, 41759, 44699, 60899, 68819, 83639, 86111, 100799, 135719, 143111, 161879, 163019, 165311, 177011, 210599, 218459, 241511, 273059, 304979, 312839, 437111, 450299, 491039, 584279, 595139, 603899, 637319
OFFSET
1,1
EXAMPLE
11 is a term because 11*nextprime(11)+1 = 12^2 and 11 + nextprime(11)+1 = 5^2.
MAPLE
nn:=10^5:
for n from 1 to nn do:
p:=ithprime(n):q:=nextprime(p):p1:=sqrt(p*q+1):p2:=sqrt(q+p+1):
if floor(p1) = p1 and floor(p2)=p2
then
printf(`%d, `, p):
else
fi:
od:
MATHEMATICA
Select[Partition[Prime[Range[100000]], 2, 1], IntegerQ[Sqrt[#[[1]] + #[[2]] + 1]] && IntegerQ[Sqrt[#[[1]]*#[[2]] + 1]] &][[;; , 1]] (* Amiram Eldar, Sep 02 2024 *)
CROSSREFS
Intersection of A001359 and A242384.
Sequence in context: A242384 A225809 A267607 * A319248 A340865 A290484
KEYWORD
nonn
AUTHOR
Michel Lagneau, Sep 02 2024
STATUS
approved