login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Largest value in the trajectory of 2*n - 1 in the Farkas map (A349407).
4

%I #16 Sep 13 2024 08:00:21

%S 1,3,5,17,9,17,17,15,17,29,21,53,25,27,29,161,33,53,37,39,41,65,45,

%T 161,49,51,53,125,57,89,161,63,65,101,69,161,73,75,77,269,81,125,85,

%U 87,89,137,161,485,97,99,101,233,105,161,125,111,113,173,117,269,161

%N Largest value in the trajectory of 2*n - 1 in the Farkas map (A349407).

%H Paolo Xausa, <a href="/A375911/b375911.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = max{A350279(n,k) for 1 <= k <= A375909(n) + 1}.

%e a(10) = 29 because 29 is the largest value in the trajectory 19 -> 29 -> 15 -> 5 -> 3 -> 1.

%t FarkasStep[x_] := Which[Divisible[x, 3], x/3, Mod[x, 4] == 3, (3*x + 1)/2, True, (x + 1)/2];

%t Array[Max[FixedPointList[FarkasStep, 2*# - 1]] &, 100]

%Y Cf. A349407, A350279, A375909.

%Y Cf. A025586, A365478, A375280.

%K nonn,easy

%O 1,2

%A _Paolo Xausa_, Sep 02 2024