login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375440
Expansion of g.f. A(x) satisfying 0 = Sum_{k=0..n} (-1)^k * binomial(2*n, 2*k) * ([x^k] A(x)^n) for n >= 1.
3
1, 1, 5, 65, 1593, 61953, 3476813, 265517441, 26492540401, 3349218907137, 523572565927509, 99215376614955457, 22415450137196941993, 5953820173628518544385, 1837040977427662958973341, 651657636773935012586716929, 263375512326578915885862469601, 120319850003020550647400856678401
OFFSET
0,3
COMMENTS
Note that 0 = Sum_{k=0..n} (-1)^k * binomial(n+k, 2*k) * ([x^k] C(x)^n) for n >= 1 is satisfied by the Catalan function C(x) = 1 + x*C(x)^2 (A000108), where coefficient [x^k] C(x)^n = binomial(n+2*k-1,k)*n/(n+k).
LINKS
FORMULA
a(n) ~ c * 2^(4*n) * n^(2*n + 1/2) / (Pi^(2*n) * exp(2*n)), where c = 7.23682343848882192289996... - Vaclav Kotesovec, Sep 12 2024
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2 + 65*x^3 + 1593*x^4 + 61953*x^5 + 3476813*x^6 + 265517441*x^7 + 26492540401*x^8 + ...
RELATED TABLES.
The table of coefficients of x^k in A(x)^n begins:
n=1: [1, 1, 5, 65, 1593, 61953, 3476813, ...];
n=2: [1, 2, 11, 140, 3341, 127742, 7097687, ...];
n=3: [1, 3, 18, 226, 5259, 197637, 10869476, ...];
n=4: [1, 4, 26, 324, 7363, 271928, 14799444, ...];
n=5: [1, 5, 35, 435, 9670, 350926, 18895290, ...];
n=6: [1, 6, 45, 560, 12198, 434964, 23165174, ...];
...
from which we may illustrate the defining property given by
0 = Sum_{k=0..n} (-1)^k * binomial(2*n, 2*k) * ([x^k] A(x)^n).
Using the coefficients in the table above, we see that
n=1: 0 = 1*1 - 1*1;
n=2: 0 = 1*1 - 6*2 + 1*11;
n=3: 0 = 1*1 - 15*3 + 15*18 - 1*226;
n=4: 0 = 1*1 - 28*4 + 70*26 - 28*324 + 1*7363;
n=5: 0 = 1*1 - 45*5 + 210*35 - 210*435 + 45*9670 - 1*350926;
n=6: 0 = 1*1 - 66*6 + 495*45 - 924*560 + 495*12198 - 66*434964 + 1*23165174;
...
The triangle A086645(n,k) = binomial(2*n, 2*k) begins:
n=0: 1;
n=1: 1, 1;
n=2: 1, 6, 1;
n=3: 1, 15, 15, 1;
n=4: 1, 28, 70, 28, 1;
n=5: 1, 45, 210, 210, 45, 1;
n=6: 1, 66, 495, 924, 495, 66, 1;
...
PROG
(PARI) {a(n) = my(A=[1], m); for(i=1, n, A=concat(A, 0); m=#A-1;
A[m+1] = sum(k=0, m, (-1)^(m-k+1) * binomial(2*m, 2*k) * polcoef(Ser(A)^m, k) )/m ); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 11 2024
STATUS
approved