login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. A(x) satisfying A(x) = (1 + 3*x*A(x)) * (1 + 2*x*A(x)^2).
4

%I #12 Sep 08 2024 19:48:58

%S 1,5,41,427,4997,62697,824361,11210331,156371609,2224976461,

%T 32167995497,471208730027,6978452945485,104313403711649,

%U 1571764793999769,23847629857934859,364033580432140593,5586881305151655381,86153520326218040553,1334246446733337499755,20743139707001572645461

%N Expansion of g.f. A(x) satisfying A(x) = (1 + 3*x*A(x)) * (1 + 2*x*A(x)^2).

%C In general, if G(x) = (1 + p*x*G(x)) * (1 + q*x*G(x)^2) for fixed p and q, then

%C (C.1) G(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * p^(n-k) * q^k * G(x)^k ).

%C (C.2) G(x) = (1/x) * Series_Reversion( x/(1 + p*x) - q*x^2 ).

%C (C.3) x = (sqrt((p - q*y)^2 + 4*p*q*y^2) - (p + q*y))/(2*p*q*y^2), where y = G(x).

%H Paul D. Hanna, <a href="/A375437/b375437.txt">Table of n, a(n) for n = 0..400</a>

%F G.f. A(x) = Sum{n>=0} a(n)*x^n satisfies the following formulas.

%F (1) A(x) = (1 + 3*x*A(x)) * (1 + 2*x*A(x)^2).

%F (2) A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * 3^(n-k) * 2^k * A(x)^k ).

%F (3) A(x) = (1/x) * Series_Reversion( x*(1 - 2*x - 6*x^2)/(1 + 3*x) ).

%F (4) A(x) = Sum_{n>=0} A307469(n) * x^n * A(x)^n, where g.f. of A307469 = (1 + 3*x)/(1 - 3*x - 6*x^2).

%F (5) x = (sqrt(28*A(x)^2 - 12*A(x) + 9) - (3 + 2*A(x)))/(12*A(x)^2).

%F a(n) = Sum_{k=0..n} 2^k * 3^(n-k) * binomial(n+k+1,k) * binomial(n+k+1,n-k) / (n+k+1). - _Seiichi Manyama_, Sep 08 2024

%e G.f. A(x) = 1 + 5*x + 41*x^2 + 427*x^3 + 4997*x^4 + 62697*x^5 + 824361*x^6 + 11210331*x^7 + 156371609*x^8 + 2224976461*x^9 + 32167995497*x^10 + ...

%e where A(x) = (1 + 3*x*A(x)) * (1 + 2*x*A(x)^2).

%e RELATED SERIES.

%e Let B(x) = A(x/B(x)) and B(x*A(x)) = A(x), then

%e B(x) = 1 + 5*x + 16*x^2 + 62*x^3 + 220*x^4 + 812*x^5 + 2944*x^6 + 10760*x^7 + ... + A307469(n)*x^n + ...

%e where B(x) = (1 + 3*x)/(1 - 3*x - 6*x^2).

%o (PARI) {a(n) = my(A=1+x); for(i=1, n, A=(1 + 3*x*A)*(1 + 2*x*(A+x*O(x^n))^2)); polcoef(A, n)}

%o for(n=0, 20, print1(a(n), ", "))

%o (PARI) {a(n)=polcoef( (1/x)*serreverse( x*(1 - 2*x - 6*x^2)/(1 + 3*x +x*O(x^n))), n)}

%o for(n=0, 20, print1(a(n), ", "))

%o (PARI) {a(n) = my(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2 * 3^(m-j) * 2^j * A^j)*x^m/m))); polcoef(A, n)}

%o for(n=0, 20, print1(a(n), ", "))

%Y Cf. A307469, A216314, A215661, A375434, A375435, A375436.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Sep 07 2024