login
A375373
Expansion of 1/( (1 + x)^2 * (1 - x^2*(1 + x)^2) ).
2
1, -2, 4, -4, 6, -4, 9, -4, 16, 0, 28, 16, 57, 58, 132, 172, 322, 476, 817, 1272, 2112, 3360, 5496, 8832, 14353, 23158, 37540, 60668, 98238, 158876, 257145, 415988, 673168, 1089120, 1762324, 2851408, 4613769, 7465138, 12078948, 19544044, 31623034, 51167036
OFFSET
0,2
FORMULA
a(n) = -2*a(n-1) + 4*a(n-3) + 6*a(n-4) + 4*a(n-5) + a(n-6).
a(n) = Sum_{k=0..floor(n/2)} binomial(2*k-2,n-2*k).
2*a(n) = 2*(-1)^n*(n+1) +A212804(n)-A057078(n). - R. J. Mathar, Aug 14 2024
PROG
(PARI) my(N=50, x='x+O('x^N)); Vec(1/((1+x)^2*(1-x^2*(1+x)^2)))
(PARI) a(n) = sum(k=0, n\2, binomial(2*k-2, n-2*k));
CROSSREFS
Sequence in context: A372787 A372791 A062011 * A225520 A132857 A365264
KEYWORD
sign
AUTHOR
Seiichi Manyama, Aug 13 2024
STATUS
approved