login
A375274
Decimal expansion of the asymptotic density of the exponentially Fibonacci numbers (A115063).
2
9, 4, 4, 3, 3, 5, 9, 0, 5, 0, 6, 4, 0, 6, 3, 3, 2, 4, 4, 8, 0, 5, 7, 3, 1, 3, 7, 7, 5, 6, 6, 6, 8, 8, 0, 5, 6, 1, 4, 6, 3, 4, 5, 8, 3, 2, 2, 2, 0, 2, 3, 5, 5, 5, 9, 2, 3, 6, 8, 3, 7, 7, 0, 4, 5, 5, 9, 3, 9, 5, 3, 8, 4, 6, 5, 4, 4, 6, 8, 5, 8, 7, 1, 9, 4, 1, 4, 2, 8, 0, 5, 2, 0, 3, 3, 7, 9, 2, 7, 4, 7, 9, 7, 2, 4
OFFSET
0,1
COMMENTS
This constant was apparently first calculated by Juan Arias-de-Reyna and Peter J. C. Moses in 2015 (see A115063).
FORMULA
Equals Product_{p prime} (1 + Sum_{i>=2} (u(i) - u(i-1))/p^i), where u(i) = A010056(i) is the characteristic function of the Fibonacci numbers (A000045) (first formula at A115063).
Equals Product_{p prime} (1 + Sum_{i>=4} (-1)^(i+1)/p^A259623(i)).
Equals Product_{p prime} ((1 - 1/p) * (1 + Sum_{i>=2} 1/p^Fibonacci(i))).
EXAMPLE
0.94433590506406332448057313775666880561463458322202...
MATHEMATICA
$MaxExtraPrecision = m = 500; em = 16; f[x_] := Log[(1 - x) * (1 + Sum[x^Fibonacci[e], {e, 2, em}])]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x] * Range[0, m]]; RealDigits[Exp[NSum[Indexed[c, k]*PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 105][[1]]
PROG
(PARI) c(imax) = prodeulerrat((1-1/p)*(1 + sum(i = 2, imax, 1/p^fibonacci(i))));
f(prec) = {default(realprecision, prec); my(k = 2, c1 = 0, c2 = c(k)); while(c1 != c2, k++; c1 = c2; c2 = c(k)); c1; }
f(120)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Aug 09 2024
STATUS
approved