login
A374972
Decimal expansion of the sagitta of a regular heptagon with unit side length.
10
1, 1, 4, 1, 2, 1, 7, 3, 7, 1, 9, 5, 0, 7, 4, 9, 6, 9, 0, 3, 8, 8, 0, 5, 6, 8, 1, 0, 3, 0, 5, 0, 7, 3, 9, 1, 3, 6, 9, 3, 9, 0, 8, 4, 0, 4, 9, 0, 1, 7, 6, 3, 1, 8, 9, 8, 9, 8, 4, 4, 4, 5, 9, 8, 0, 1, 9, 1, 2, 4, 2, 7, 8, 5, 6, 9, 4, 0, 9, 3, 9, 4, 5, 7, 3, 4, 6, 9, 3, 5
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Regular Polygon.
Eric Weisstein's World of Mathematics, Sagitta.
FORMULA
Equals tan(Pi/14)/2 = A343059/2.
Equals A374957 - A374971.
EXAMPLE
0.114121737195074969038805681030507391369390840490...
MATHEMATICA
First[RealDigits[Tan[Pi/14]/2, 10, 100]]
PROG
(PARI) tan(Pi/14)/2 \\ Charles R Greathouse IV, Feb 04 2025
(PARI) polrootsreal(448*x^6-560*x^4+84*x^2-1)[4] \\ Charles R Greathouse IV, Feb 04 2025
CROSSREFS
Cf. A374957 (circumradius), A374971 (apothem), A178817 (area).
Cf. sagitta of other polygons with unit side length: A020769 (triangle), A174968 (square), A375068 (pentagon), A375069 (hexagon), A374972 (heptagon), A375070 (octagon), A375153 (9-gon), A375189 (10-gon), A375192 (11-gon), A375194 (12-gon).
Cf. A343059.
Sequence in context: A380313 A126241 A353515 * A019777 A337515 A090885
KEYWORD
nonn,cons,easy
AUTHOR
Paolo Xausa, Jul 26 2024
STATUS
approved