login
A373956
Greatest sum of run-compression of a permutation of the prime indices of n.
7
0, 1, 2, 1, 3, 3, 4, 1, 2, 4, 5, 4, 6, 5, 5, 1, 7, 5, 8, 5, 6, 6, 9, 4, 3, 7, 2, 6, 10, 6, 11, 1, 7, 8, 7, 6, 12, 9, 8, 5, 13, 7, 14, 7, 7, 10, 15, 4, 4, 7, 9, 8, 16, 5, 8, 6, 10, 11, 17, 7, 18, 12, 8, 1, 9, 8, 19, 9, 11, 8, 20, 7, 21, 13, 8, 10, 9, 9, 22, 5
OFFSET
1,3
COMMENTS
We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, run-compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
FORMULA
a(n) = A056239(n) iff n belongs to A335433 (the separable case), complement A335448.
EXAMPLE
The prime indices of 24 are {1,1,1,2}, with permutations such as (1,1,2,1) whose run-compression sums to 4, so a(24) = 4.
The prime indices of 216 are {1,1,1,2,2,2}, with permutations such as (1,2,1,2,1,2) whose run-compression sums to 9, so a(216) = 9.
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Max@@(Total[First/@Split[#]]&/@Permutations[prix[n]]), {n, 100}]
CROSSREFS
Positions of first appearances are 1 followed by the primes A000040.
Positions of 1 are A000079 (powers of two) except 1.
Positions of 2 are A000244 (powers of three) except 1.
Positions of 3 are {6} U A000351 (six or powers of five) except 1.
For number of runs instead of sum of run-compression we have A373957.
For prime factors instead of indices we have A374250.
A001221 counts distinct prime factors, A001222 with multiplicity.
A003242 counts run-compressed compositions, i.e., anti-runs.
A007947 (squarefree kernel) represents run-compression of multisets.
A008480 counts permutations of prime factors (or prime indices).
A056239 adds up prime indices, row sums of A112798.
A116861 counts partitions by sum of run-compression.
A304038 lists run-compression of prime indices, sum A066328.
A335433 lists numbers whose prime indices are separable, complement A335448.
A373949 counts compositions by sum of run-compression, opposite A373951.
A374251 run-compresses standard compositions, sum A373953, rank A373948.
Sequence in context: A326619 A326567 A066328 * A330417 A330415 A319225
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 06 2024
STATUS
approved