OFFSET
1,3
COMMENTS
We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, run-compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
EXAMPLE
The prime indices of 24 are {1,1,1,2}, with permutations such as (1,1,2,1) whose run-compression sums to 4, so a(24) = 4.
The prime indices of 216 are {1,1,1,2,2,2}, with permutations such as (1,2,1,2,1,2) whose run-compression sums to 9, so a(216) = 9.
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Max@@(Total[First/@Split[#]]&/@Permutations[prix[n]]), {n, 100}]
CROSSREFS
Positions of first appearances are 1 followed by the primes A000040.
Positions of 1 are A000079 (powers of two) except 1.
Positions of 2 are A000244 (powers of three) except 1.
Positions of 3 are {6} U A000351 (six or powers of five) except 1.
For number of runs instead of sum of run-compression we have A373957.
For prime factors instead of indices we have A374250.
A003242 counts run-compressed compositions, i.e., anti-runs.
A007947 (squarefree kernel) represents run-compression of multisets.
A008480 counts permutations of prime factors (or prime indices).
A116861 counts partitions by sum of run-compression.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 06 2024
STATUS
approved