login
A373883
Number of lattice points inside or on the 5-dimensional hypersphere x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 = 10^n.
5
11, 1903, 532509, 166711479, 52646439609, 16645828150193, 5263797438037625, 1664556518763850069, 526378909839312477785, 166455624316184206850205, 52637890147973140623040513, 16645562406807092052281075983, 5263789013922669372094091725857
OFFSET
0,1
FORMULA
a(n) = A175360(10^n).
PROG
(PARI) b(k, n) = my(q='q+O('q^(n+1))); polcoef((eta(q^2)^5/(eta(q)^2*eta(q^4)^2))^k/(1-q), n);
a(n) = b(5, 10^n);
KEYWORD
nonn,more
AUTHOR
Seiichi Manyama, Jun 21 2024
EXTENSIONS
a(7) from Chai Wah Wu, Jun 22 2024
a(8)-a(10) from Chai Wah Wu, Jun 23 2024
a(11)-a(12) from Chai Wah Wu, Jun 24 2024
STATUS
approved